

Dominique Pateron

alle d'AccueilHôpital Saint-Antoine & Sorbonne Université les Urgences Vitales Frédéric Adnet

Hôpital Avicenne & Université Paris 13, Bobigny

Intubation aux urgences: tendances actuelles

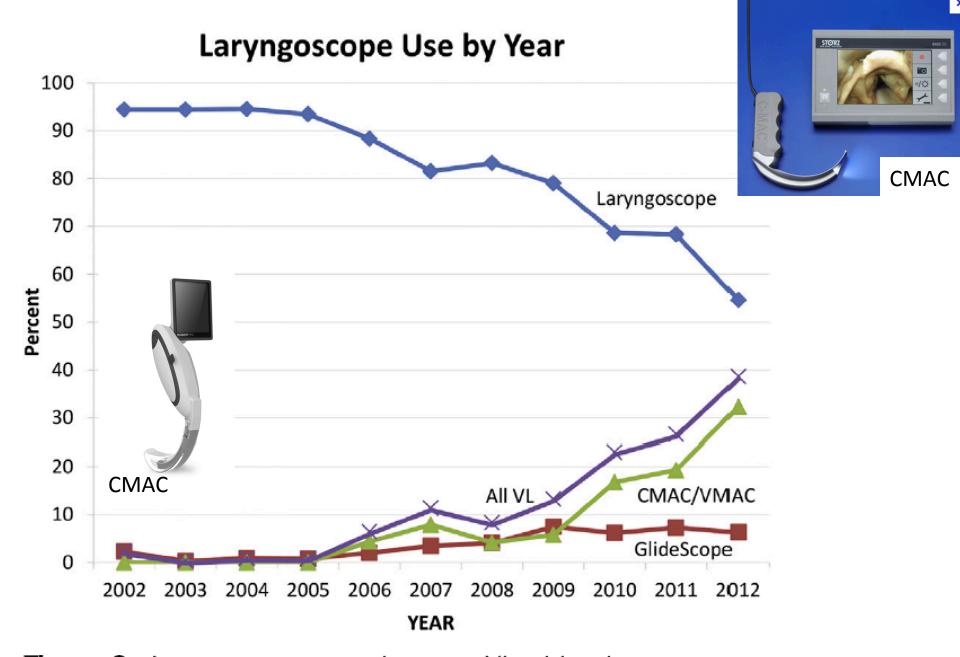
Techniques, Success, and Adverse Events of Emergency Department Adult Intubations

Calvin A. Brown, III, MD*; Aaron E. Bair, MD; Daniel J. Pallin, MD, MPH; Ron M. Walls, MD; on behalf of the NEAR III Investigators

- Travail observationnel, multicentrique
- 17.583 intubations
- 2002 à 2012
- Etiologies principales
 - Trauma crânien
 - ACR
 - Comas médicaux

Circonstances d'intubation en urgence

Table 1.Prehospital diagnosis of study patients (N=691).


Diagnosis	No.	%
Iliness Cardiac arrest Neurologic medical distress Cerebrovascular accident Seizure Toxic ingestion Unknown Respiratory distress Collapse Injury Multiply injured patients	333 198 26 23 94 65 64 22 64 22	48.2 28.1 3.8 3.3 13.6 9.4 9.3 3.2 9.3 3.2
Head trauma Burn	31 11	4.5 1.6

Circonstances d'intubation en urgence

650 patients intubés hors ACR

Reasons for emergency intubation		
Comatose	162 (69%)	162 (69%)
Shock	31 (13%)	26 (11%)
Acute respiratory failure	37 (16%)	41 (17%)
Other	4 (2%)	6 (3%)

Jabre & Adnet, Lancet, 2009

Figure 2. Laryngoscope use by year. *VL*, video laryngoscope.

Ann Emerg Med 2014, Dec 19.

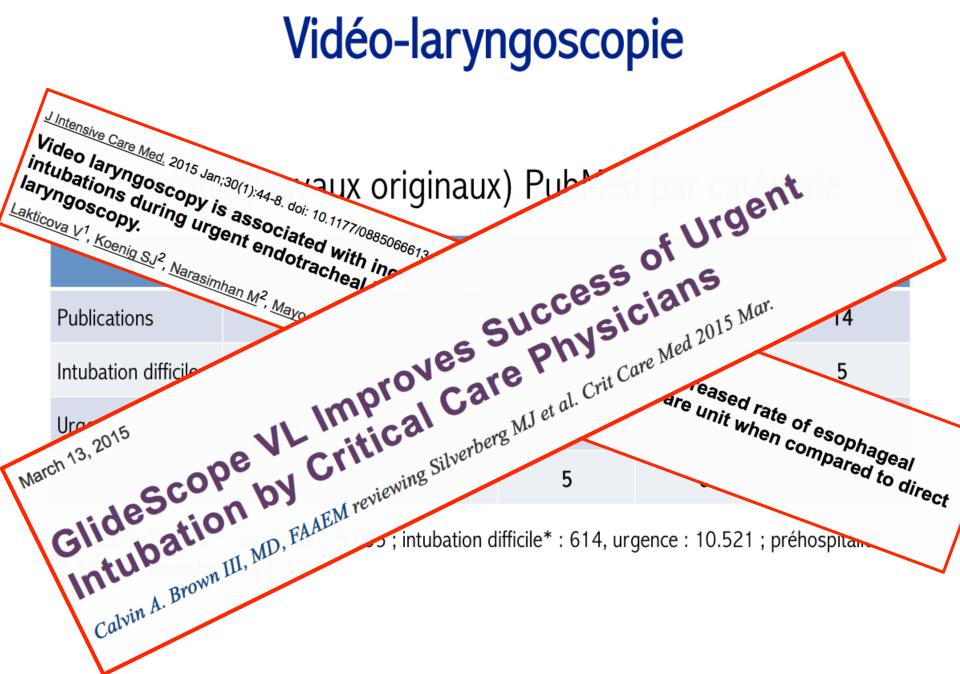
Mac Grath®

Airtraq®

Airwayscope®

LMA Ctrach®

Publications (travaux originaux) PubMed par catégorie


	Glidescope®	Mac Grath®	Airtraq®	AirwayScope®	LMA CTrach®
Publications	112	10	61	9	14
Intubation difficile	57	8	35	1	5
Urgence	11	0	8	2	5
Préhospitalier	6	0	5	0	1

Termes MeSh sauf *: intubation: 5.035; intubation difficile*: 614, urgence: 10.521; préhospitalier: 5.351 25 Novembre 2014

Video laryngoscopy is associations during ure associations during ure associations

ktice	ova VI K	associate 10.1177/	08850	,	' ,		
	Noenig SJ ² , Narasim	endotrachea	increase Epu	Airtraq®	AirwayScope®	LMA CTrach®	
	Publications	ian M², Mayo PH².	Intubation in a	pass succe	9	LMA CTrach® 14 5 te of esophageal compared to di	
	Intubation difficile	57		redical intensiv	nd decreasou	5	
	Urgence	11	0		sare unit whe	te of esophac	
	Préhospitalier	6	0	5		""pared to d	ir _{ect}
	T M CL (+		25 ' ' ' ' '	···· · · · · · · · · · · · · · · · · ·	10.531	4	

Termes MeSh sauf *: intubation: 5.035; intubation difficile*: 614, urgence: 10.521; préhospitant 5.351 25 Novembre 2014

A systematic review of the role of videolaryngoscopy in successful orotracheal intubation

Abstract

Background: The purpose of our study was to organize the literature regarding the efficacy of modern videolaryngoscopes in oral endotracheal intubation, then perform a quality assessment according to recommended external criteria and make recommendations for use.

Methods: Inclusion criteria included devices with recent studies of human subjects. A total of 980 articles were returned in the initial search and 65 additional items were identified using cited references. After exclusion of articles failing to meet study criteria, 77 articles remained. Data were extracted according to the rate of successful intubation and improvement of glottic view compared with direct laryngoscopy. Studies were classified according to whether they primarily examined subjects with normal airways, possessing risk factors for difficult direct laryngoscopy, or following difficult or failed direct laryngoscopy.

Results: The evidence of efficacy for videolaryngoscopy in the difficult airway is limited. What evidence exists is both randomized prospective and observational in nature, requiring a scheme that evaluates both forms and allows recommendations to be made.

Conclusions: In patients at higher risk of difficult laryngoscopy we recommend the use of the Airtraq, CTrach, GlideScope, Pentax AWS and V-MAC to achieve successful intubation. In difficult direct laryngoscopy (C&L >/= 3) we cautiously recommend the use of the Airtraq, Bonfils, Bullard, CTrach, GlideScope, and Pentax AWS, by an operator with reasonable prior experience, to achieve successful intubation when used in accordance with the ASA practice guidelines for management of the difficult airway. There is additional evidence to support the use of the Airtraq, Bonfils, CTrach, GlideScope, McGrath, and Pentax AWS following failed intubation via direct laryngoscopy to achieve successful intubation. Future investigation would benefit from precise qualification of the subjects under study, and an improvement in overall methodology to include randomization and blinding.

Keywords: Laryngoscopy, Airway management, Intubation, Technology

Lame de laryngoscope

• Lame métallique > lame plastique

• Lame métallique : usage unique = réutilisable

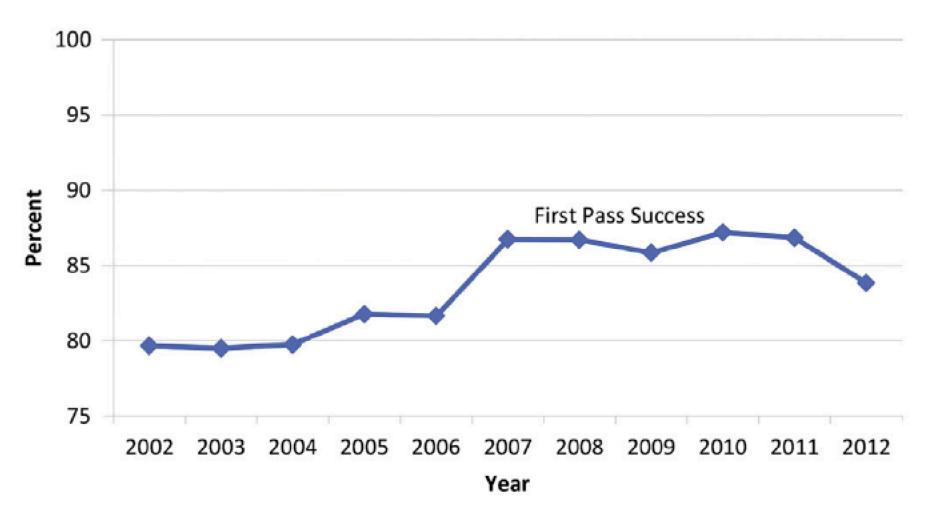
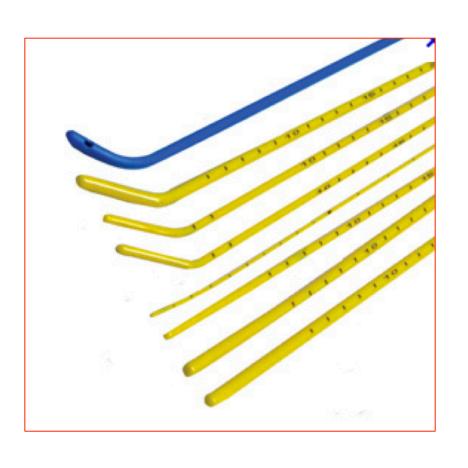
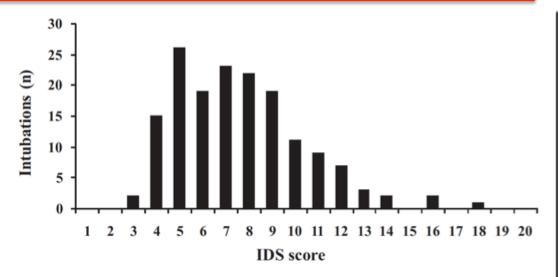



Figure 4. Time-trended first-attempt success by year.

Intubation difficile et morbidité

Mandrin d'Eschmann


 Matériel de première intention en cas de mauvaise visualisation

 Utilisable avec les Vlaryngoscopes

 Obligatoire dans les kits d'intubation en urgence

Incidence de l'intubation difficile & site

2.674 intubations préhospitalières Intubations difficiles : 60 (6%)

Fig. 2. Distribution of the IDS values of the 160 difficult intubations recorded during the study period. IDS = intubation difficulty scale.

Table 2. Distribution of the Intubation Difficulty Scale Subcomponents in the 160 Patients

Parameter	N = 160
N1: Number of attempt >1 (n)	
1	26
2 3 4	47
3	50
4	21
5	10
6	6
Number of operators >1 (n)	
0	73
1	74
2	13
Number of alternative techniques (n)	
1	115
2	45
Cormack and Lehanne grade (n)	
į.	2
<u> </u>	13
III.	128
IV	17
Lifting force required (n)	
Normal	33
Increased	127
Laryngeal pressure (n)	
Not applied	54
Applied	106
Vocal cord mobility (n)	4.5
Abduction	15
Adduction	0
Not seen	145

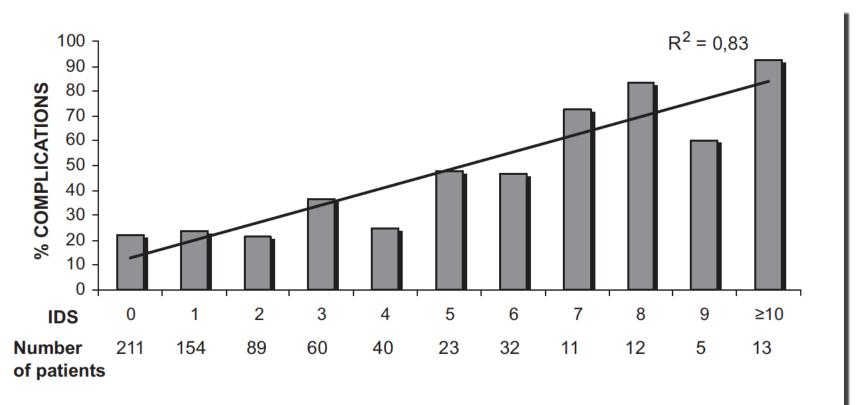


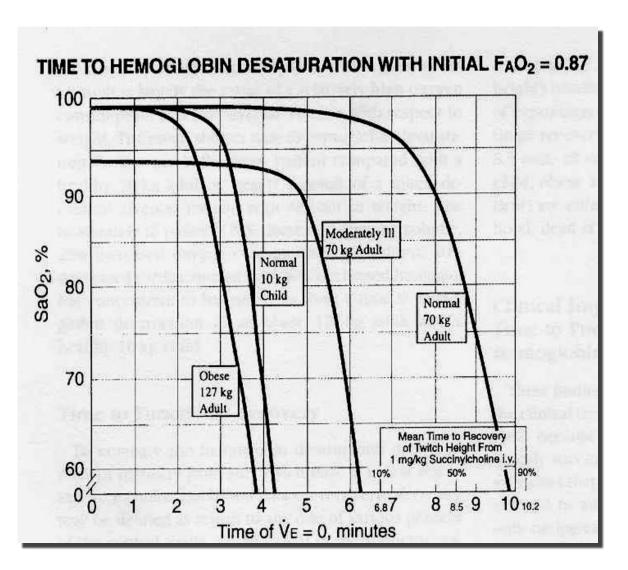
Fig. 1. Relationship between the intubation difficulty scale (IDS) score and the intubation-related complication rate.

Table 3.	Early	Complications	during	and	within	15	Min
of Intubat	tion						

Complications	N* (%)
Patients with complications	83 (52)
Oesophageal intubation	58 (36)
Vomiting	11 (7)
Pulmonary aspiration	23 (14)
Dental trauma	3 (2)
Bronchospasm or laryngospasm	3 (2)
Arterial desaturation during intubation	42 (26)
Cardiac arrest during intubation	10 (6)
	10 (0)

Table 3 Intubation-related complications according to intubation difficulty.

	Non difficult intubation (N = 577)	Difficult intubation $(N=73)$	р
Complications, n (%)	144 (25)	48 (66)	<0.0001
Oxygen desaturation	46 (8)	24 (33)	<0.0001
Hypotension	76 (13)	12 (16)	0.44
Cardiac arrest	12(2.0)	7(9.5)	0.0003
Aspiration during intubation	2 (0)	3(4)	0.01
Vomiting	8(1)	4(5)	0.03
Bronchospasm and/or laryngospasm	0(0)	1(1)	_
Mainstem intubation	13(2)	6(8)	0.01
Esophageal intubation	10(2)	16 (22)	<0.0001
Dental trauma	3(0.7)	6(8.1)	<0.0001

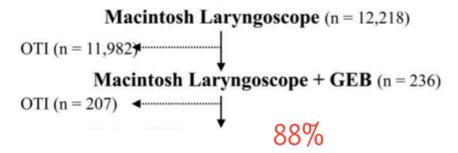

^a Difficult intubation was defined as IDS > 5.

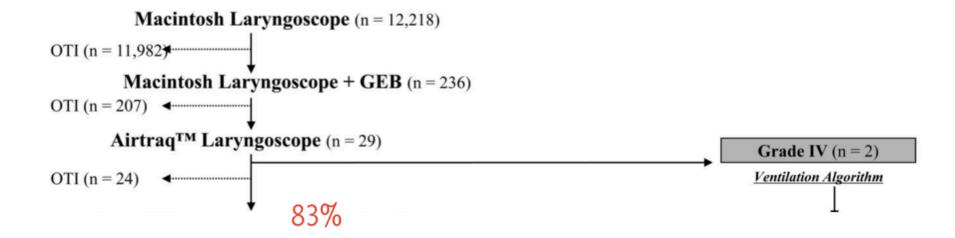
650 patients intubés en préhospitalier (KETASED) Intubation difficile : 73 (11%)

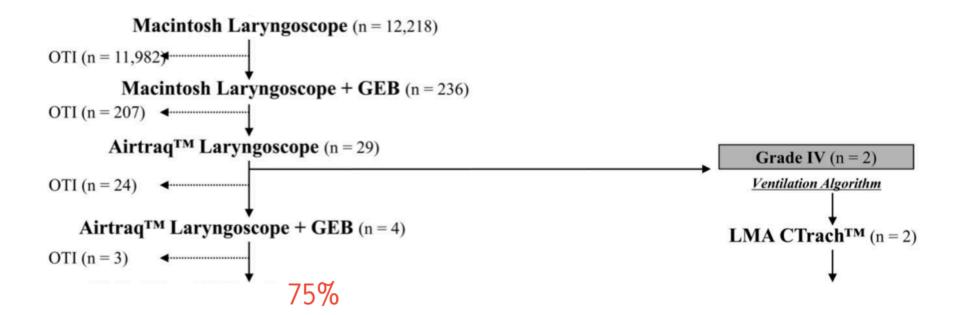
	Intubation non difficile	Intubation difficile	p
Mortalité préhospitalière	16 (3%)	11 (15%)	< 0,0001

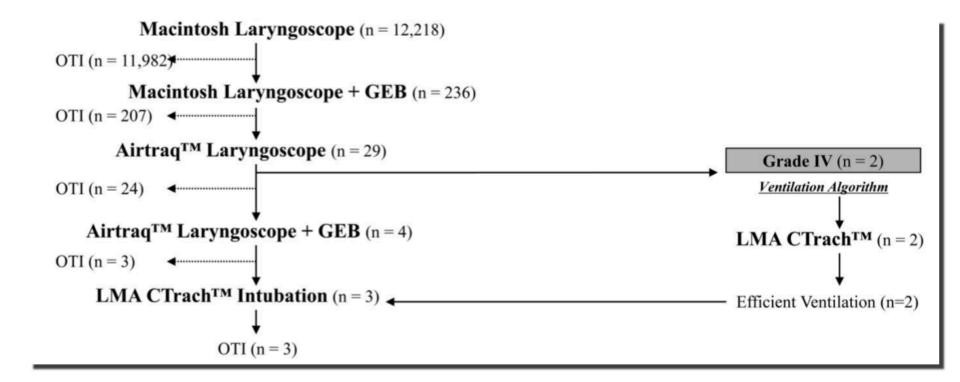
Facteur indépendant de mortalité : OR = 1,7 (1,1-2,6; p=0,01)

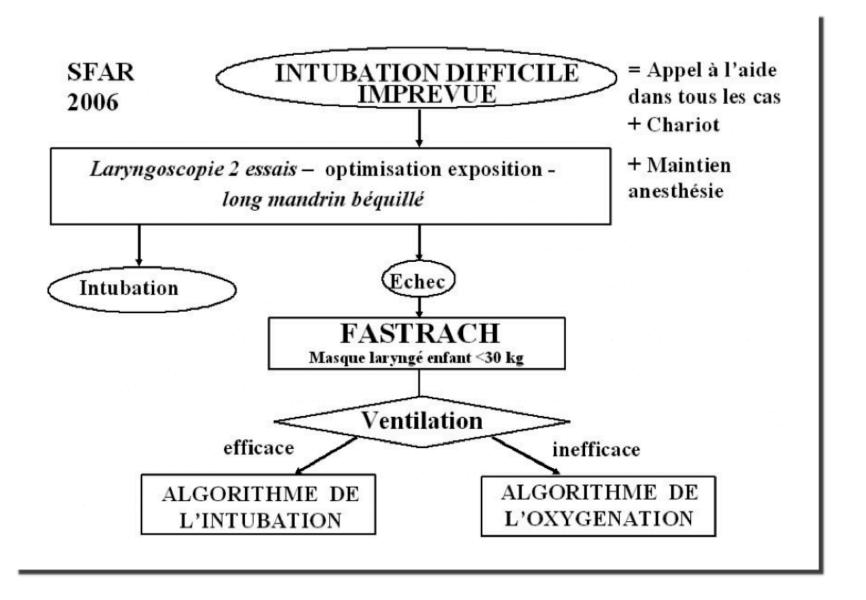
Désaturation pendant une ISR


Changement de paradigme


- Ventilation prudente au masque pendant la pause respiratoire
- Patient ventilable ou non
- Permet de débuter l'algorithme plus tôt


Macintosh Laryngoscope (n = 12,218)

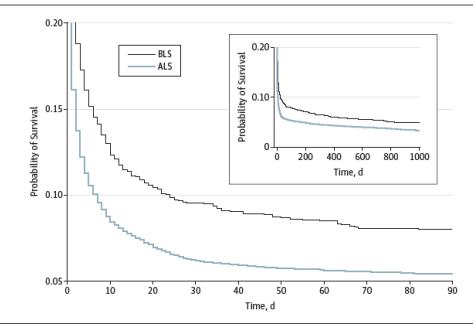

98%



Intubation difficile : algorithme de référence

Nouvelles problématiques

Intubation dans l'ACR?

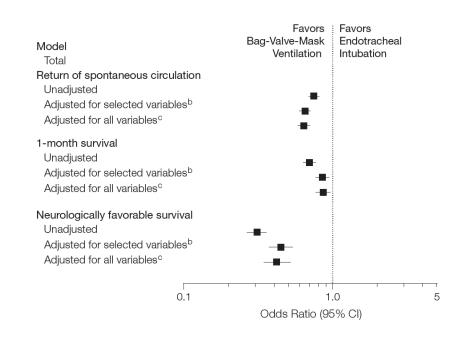

- La ventilation au cours de la prise en charge d'un ACR est débattue
- La prise en charge agressive des voies aériennes semble être associée à une morbidité importante
- L'intubation trachéale est associée à une surmortalité
- Plusieurs travaux remettent la ventilation au masque comme technique efficace

Outcomes After Out-of-Hospital Cardiac Arrest Treated by Basic vs Advanced Life Support

Prachi Sanghavi, BS; Anupam B. Jena, MD, PhD; Joseph P. Newhouse, PhD; Alan M. Zaslavsky, PhD

- Comparaison entre patients en ACR pris en charge ALS vs. BLS
- 31.292 ACR (ALS) vs. 1642
 ACR (BLS)
- ALS =intubation; BLS = masque

Figure 2. Kaplan-Meier Analysis of Survival After Cardiac Arrest by Ambulance Service Level


conclusions and relevance Patients with out-of-hospital cardiac arrest who received BLS had higher survival at hospital discharge and at 90 days compared with those who received ALS and were less likely to experience poor neurological functioning.

Association of Prehospital Advanced Airway Management With Neurologic Outcome and Survival in Patients With Out-of-Hospital Cardiac Arrest

Kohei Hasegawa, MD, MPH

Importance It is unclear whether advanced airway management such as endotra-

- Appariement par score de propension
- 649.359 patients
 - 367.837 masque
 - 41.972 intubation
 - 239.550 matériel supra-glottique

Emergency intubation for acutely ill and injured patients (Review)

Lecky F, Bryden D, Little R, Tong N, Moulton C

Main results

We identified three eligible RCTs carried out in urban environments. Two trials involved adults with non-traumatic out-of-hospital cardiac arrest. One of these trials found a non-significant survival disadvantage in patients randomised to receive a physician-operated intubation versus a combi-tube (RR 0.44, 95% CI 0.09 to 1.99). The second trial detected a non-significant survival disadvantage in patients randomised to paramedic intubation versus an oesophageal gastric airway (RR 0.86, 95% CI 0.39 to 1.90). The third included study was a trial of children requiring airway intervention in the prehospital environment. The results indicated no difference in survival (OR 0.82, 95% CI 0.61 to 1.11) or neurologic outcome (OR 0.87, 95% CI 0.62 to 1.22) between paramedic intubation versus bag-valve-mask ventilation and later hospital intubation by emergency physicians; however, only 42% of the children randomised to paramedic endotracheal intubation actually received it.

Authors' conclusions

The efficacy of emergency intubation as currently practised has not been rigorously studied. The skill level of the operator may be key in determining efficacy.

In non-traumatic cardiac arrest, it is unlikely that intubation carries the same life saving benefit as early defibrillation and bystander cardiopulmonary resuscitation (CPR).

In trauma and paediatric patients, the current evidence base provides no imperative to extend the practice of prehospital intubation in urban systems.

It would be ethical and pertinent to initiate a large, high quality randomised trial comparing the efficacy of competently practised emergency intubation with basic bag-valve-mask manoeuvres (BVM) in urban adult out-of-hospital non-traumatic cardiac arrest.

Emergency intubation for acutely ill and injured patients (Review)

Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Ou en est-on?

- Un faisceau d'arguments entrainent les recommandations vers l'abandon de l'intubation
- La qualité de l'opérateur n'a pas été évaluée
- Pas d'études de haut niveau de preuve
- Nécessité d'évaluer nos pratiques en fournissant des arguments pour optimiser la ventilation au cours de la réanimation d'un ACR

Prise en charge initiale des voies aériennes des patients en arrêt cardiaque en préhospitalier : intubation trachéale vs. ventilation au masque

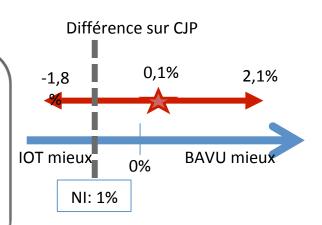
Étude CAAM

PHRC national 2013

DESIGN DE L'ÉTUDE

Recherche biomédicale hors produits de santé, de non infériorité, prospective, multicentrique, phase III, en ouvert contrôlée et randomisée

Nombre de patients à inclure :	2000 patients
Durée de participation de chaque patient :	28 jours
Durée des inclusions :	24 mois
Durée de l'étude :	24 mois et 28 jours
18 centres participants :	14 en France et 4 en Belgique
Analyses intermédiaires :	50% et 75% des inclusions


Effect of Bag-Mask Ventilation vs Endotracheal Intubation During CPR on neurological outcome

JAMA 2018 Jabre et al

Résultats

2043 patients inclus – 65 ans 68% d'origine cardiaque, 5% trauma 70% devant témoin et 50% RCP par témoin 16% rythme choquable

4% de survie avec bon pronostic neuro 39% de RACS avec IOT vs 34% (p=0,03)

Conclusion

Pas de différence significative mais résultats non concluants.

Il aurait fallu inclure 6000 malades...

D'aucuns se consolent du taux supérieur de complications dans le groupe BMV

Intubation des comas toxiques remise en question

DECREASED GLASGOW COMA SCALE SCORE DOES NOT MANDATE ENDOTRACHEAL INTUBATION IN THE EMERGENCY DEPARTMENT

Russell Duncan, MBCHB, MRCS(A&E) and Shobhan Thakore, MBCHB, BMSC(HONS), FRCS(A&E) FCEM

- Etude observationnelle
 - 73 patients intoxiqués
 - 12 patients avec GCS <8</p>
 - Monitorés; surveillés
 - 6 en DIS
 - 3 sondes naso-pharyngées
 - 3 « oropharyngeal airway »
- Conclusion: ce n'est pas la peine d'intuber!

Apport de l'échographie

Petrovic, Echographie d'urgence, 2013

Vérification de la position de la sonde par échographie

Transtracheal ultrasound 417

Table 1 Chara	cteristic	s of the studi	es whicl	n met	the inclus	sion criteria									
Study	Years	Origin	Em/El	n	US sign	US probe	Probe position	Operator	Time*	TP	FP	FN	TN	Sn	Sp
$\text{Hoffmann } B^{\textcolor{red}{27}}$	2014	USA	Em	101	4	7 -10 M L	ssn	EP	30 to 120	91	0	0	10	100	100
Sun JT ²⁸	2014	Taiwan	Em	96	1	3.75 M	ssn	EMR	10	89	1	0	6	100	86
Chou HC ¹³	2013	Taiwan	Em	89	1	3.75 M C	ssn	EMR	10	82	1	0	6	100	86
Adi O ²⁹	2013	Malaysia	Em	107	2	10 M L	ctm to ssn	EMR	14 (6)	99	0	2	6	98	100
Abbasi S ²²	2013	Iran	Em	120	3,4,5,6	7.5-10 M L	ssn/ctm	EMR	-	100	0	6	14	94	100
Saglam C ³⁰	2012	Turkey	Em	69	1	10 M L	ssn	EP	< 60	62	1	2	4	97	80
Noh JK ³¹	2012	Korea	Em	19	-	-	ssn	-	5	16	0	0	3	100	100
Muslu B ⁷	2011	Turkey	El	150	7	9-12 M	ssn	Anesth.	3	75	0	0	75	100	100
Chou HC14	2011	Taiwan	Em	112	1	3.75 M C	ssn	EMR	9 (8)	94	1	1	16	99	94
Werner SL ⁶	2007	Cleve- land	El	66	8	5-10 M	ssn	Physician	-	28	0	0	38	100	100
Milling TJ ²³	2007	New York	El	40	9	3-5H	ctm	EMR	-	34	0	1	5	97	100
T7	1	• a		• 1			1	.1	1			14 .			_